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Abstract:

Over the past decade, Lyman-α and metal line absorption observations have established the

ubiquity of a gas-rich circumgalactic medium (CGM) around star-forming galaxies at z∼0.2

potentially tracing half of the missing baryonic mass within galaxy halos. Unfortunately, these

observations only provide a statistical measure of the gas in the CGM and do not constrain the

spatial distribution and kinematics of the gas. Furthermore, we have limited sensitivity to

Lyman-α at z∼0 with existing instruments. As such, we remain ignorant of how this gas may

flow from the CGM onto the disks of galaxies where it can fuel ongoing star-formation in the

present day. Fortunately, 21-cm HI observations with radio telescopes can map HI emission

providing both spatial and kinematic information for the CGM in galaxies at z=0. Observations

with phased array feeds, radio cameras, on single-dish telescopes yield unmatched surface

brightness sensitivity and survey speed. These observations can complete the census of HI in the

CGM below NHI .1017cm−2 and constrain how gas accretion is proceeding in the local universe,

particularly when used in concert with UV absorption line data.
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1 Background

Great strides have been made in understanding the nature and evolution of galaxies over the past

fifty years. We know that galaxies assemble their mass in a hierarchical manner by accreting

smaller galaxies with their associated stars and dark matter and merging with other galaxies in a

process that continues to the present day [1]. It is still unknown, however, how dark matter halos,

and the galaxies contained therein, accrete the gas that they need to continue to form stars to the

present day. Current theories suggest that there are three ways a galaxy can accrete gas. The most

straight-forward is through the accretion of a satellite galaxy as part of the hierarchical assembly

of a galaxy, but such gas-rich satellites are neither abundant enough nor contain enough gas to

sustain star formation[2]. Alternatively, gas can flow onto galaxies in either a hot (T∼106K) or

cold (T.105K) phase [3, 4]. The hot mode involves gas falling onto galaxies in a quasi-spherical

mode and is expected to be dominant for high mass galaxies in higher density environments in the

present day. In contrast, the cold mode is more filamentary in nature and should dominate at high

redshift and for low mass galaxies in lower density environments. While simulations disagree on

the amount and exact phase of this accretion [5, 6], they all agree that accretion from the

intergalactic medium through the circumgalactic medium (CGM) and onto galaxy disks should

still be occurring today.

There is certainly evidence for ongoing accretion onto galaxies in the form of discrete, cold HI

clouds [7, 8], which is likely tracing a larger, warm-hot ionized reservoir of gas [9]. Further

evidence for cold accretion comes from Lyman-limit absorption systems with low metallicities

associated with nearby galaxies [10, 11]. Absorption line studies, however, can only provide

line-of-sight information and do not yield a complete picture of the gas through the CGM of

individual galaxies. In order to understand how gas is accreted onto galaxies in the present day,

comprehensive surveys in both emission and absorption of the CGM is required.

2 Current Observations of the CGM

To date, most of the exploration of the CGM has come through UV absorption line studies. The

COS-HALOS project [12, 13] has used background quasars to study the Lyman-α absorption in

the halos of low redshift galaxies. The project has found that HI absorption at NHI&1014cm−2 is

ubiquitous out to 150 kpc for star-forming galaxies and present in 75% of passive galaxies as well

[12]. This cool CGM gas represents 25%-45% of the total baryon mass within the virial radius of

the galaxy [13, 14]. Unfortunately, above NHI∼1016cm−2 saturation of absorption lines makes it

difficult to get an accurate measure of NHI ; these are the Lyman Limit Systems. While below

NHI∼1016−17cm−2, HI absorption is common, particularly in the intergalactic medium, it has

been impossible to image in 21-cm HI emission to date. Obtaining deeper HI emission

observations is the only way forward: while Lyman-α absorption observations can reach very low

column densities, their pencil-beam nature make it extremely difficult to reconstruct the full gas

distribution and its kinematics. Furthermore, such observations are needed to measure NHI at

these column densities so that metallicities can be accurately determined. Such metallicity

measurements are key to understanding if the gas in the CGM is infalling, pristine gas or enriched

outflows.

Over the past decade, 21-cm HI emission observations have yielded great insights into the nature
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of the CGM around nearby galaxies. Single-dish and interferometric observations have revealed

both discrete HI clouds as well as diffuse HI structures that are related to previously unknown

dwarf galaxies, tidal interactions or accretion events [15, 16, 17, 18, 19, 20, 21]. While such

observations detect less than 10% more MHI , this emission is tracing the more massive,

dominant, ionized gas reservoir in the CGM of these galaxies [9]. A prime example of this are the

extensive HI surveys of the M 31’s CGM. [22] discovered a HI bridge between M 31 and M 33

with NHI&1017cm −2 that they attributed to the cosmic web (Figure 1). Higher resolution

observations with the Green Bank Telescope (GBT) have shown that this diffuse structure is

actually comprised of discrete, higher NHI clouds [23, 24]. At these HI column densities the gas

clouds are mostly ionized [25], but they allow us to trace the morphology and kinematics of this

reservoir. Furthermore, the CGM of M 31 itself is quite clumpy with HI covering fractions below

5% at NHI∼4×1017cm−2 [26]. As seen in Figure 2, these results are consistent with simulations,

but are significantly lower than what was found from COS-HALOS [27]. This could be due to the

unique properties of M 31 or represent the evolution of the CGM since z∼0.2, where most

COS-HALOS galaxies reside. These results demonstrate the need for high spatial angular

resolution HI surveys with excellent surface brightness sensitivity that can only be provided by

large single-dish telescopes in concert with interferometers.

3 The role of 21-cm HI observations in the next decade

As can be seen from Figures 1 and 2, 21-cm HI observations of the CGM of even a single galaxy

provide direct measurements of NHI , independent of the optical depth of the gas, as well as the

detailed morphology and kinematics of that gas. When combined with UV absorption line data,

we can determine the metallicity of the CGM, which provides a strong constraint on the origin of

the gas. To date, however, such deep (NHI∼1017cm−2) HI emission observations have been

limited to M 31. The filaments of gas associated with cold accretion are expected to have widths

up to .25 kpc [28], so spatial resolution is needed. M 31 is close enough that single-dish

telescopes, like the GBT, can spatially resolve HI structures down to ∼2 kpc in its CGM

mitigating the effects of beam dilution. The GBT should be capable of resolving such filaments

out to D∼10 Mpc, while Arecibo could do so out to ∼30 Mpc. Interferometers provide better

resolution and have excellent MHI sensitivity, but lack the surface brightness sensitivity needed to

detect such low-NHI emission. These observations are valuable for detecting HI clouds around

galaxies as demonstrated by HALOGAS [29]. Still to recover HI emission at low NHI , as well as

from compact sources, we need both single-dish and interferometric observations. If we wish to

study how the properties of the CGM vary with galaxy mass and environment, we need to extend

these observations to larger samples of galaxies beyond M 31.

In the next decade it will be possible to use existing single-dish telescopes, such as the GBT and

Arecibo, outfitted with new phased array feeds (PAFs), or radio cameras, FLAG [30] and

ALPACA, to make sensitive (NHI.1017cm−2) surveys covering the entire dark matter halo of

∼100 galaxies within ∼20 Mpc spanning a range of masses and environments. Due to the

dramatic improvements in survey speed from PAFs, astronomers will be able to probe more

diffuse gas around more galaxies. These data will be capable of resolving filamentary structures

associated with cold accretion and will provide a complete census of the HI content of the CGM

of these galaxies. By measuring the metallicity of these features and modeling their kinematics,

3



we will be able to identify ongoing accretion events. When combined with interferometer data,

from the ngVLA for example, we will be able to trace accretion from the CGM directly on to the

disks of galaxies.

The insight provided by such a survey will not be achievable without single-dish radio telescopes,

as even the Square Kilometer Array will not achieve such excellent NHI sensitivity. While FAST

in China will have better sensitivity and resolution than Arecibo or the GBT, the large field of

view achieved with PAFs on these telescopes will result in faster survey speeds.

Future UV studies with large-aperture space telescopes also have an important role to play in

CGM studies in the next decade and beyond. UV facilities with multiplexing ability and higher

sensitivity than Hubble/COS could be used to measure Lyman-α in multiple QSO sightlines in a

given galaxy halo. This would allow studies of spatial variation, kinematic structure, and covering

fraction of HI within individual halos. These observations would reach very low HIcolumn

densities (1013cm−2) and hence complement the 21-cm radio observations that probe higher HI

column densities
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Figure 1: Top: A map of the total HI emission associated with M 33 (lower left) and M 31 (upper

right) from [22]. The contours are at log NHI=17.0, 17.3, 17.7, 18.0, 18.3, 18.7, 19.0, 19.3, 19.7,

20.0, 20.3, and 20.7 [cm−2]. The beamsize is shown in the lower right of the panel. The box shows

the region mapped by [24] with the GBT. Bottom: The GBT HI map from [24]. The contours are

at -1, 1, 2, 4, 6, and 10 times 5×1017cm−2. The beam size is the circle in the lower left of the

image. Note that the HI structures detected by [22] are revealed to be much smaller, higher-NHI

features by [24], illustrating the critical importance of resolution and sensitivity.
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Figure 2: Top: Locations of the AMIGA [26] GBT pointings relative to M31 and M33, where the

axes are labeled with the impact parameter from the center of M31. Aside from two filled circles,

representing detections of HI associated with the Magellanic Stream, all AMIGA observations

yielded non-detections. Bottom: The cumulative covering fraction as a function of impact param-

eter of HI emission with log(NHI)≥17.6 as compared to absorption line data from COS-HALOS

[27] (left), and high-velocity clouds [31] and simulations from [32]. While the AMIGA data [26]

are consistent with simulations and the Milky Way high-velocity clouds, they are inconsistent with

the COS-HALOS data. HI and UV absorption line observations of more nearby galaxies will help

shed light on this discrepancy.
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